2,031 research outputs found

    New feature of low pTp_{T} charm quark hadronization in pppp collisions at s=7\sqrt{s}=7 TeV

    Full text link
    Treating the light-flavor constituent quarks and antiquarks that can well describe the data of light-flavor hadrons in pppp collisions at s=7\sqrt{s}=7 TeV as the underlying source of chromatically neutralizing the charm quarks of low transverse momenta (pTp_{T}), we show that the experimental data of pTp_{T} spectra of single-charm hadrons D0,+D^{0,+}, D∗+D^{*+} Ds+D_{s}^{+}, Λc+\Lambda_{c}^{+} and Ξc0\Xi_{c}^{0} at mid-rapidity in the low pTp_{T} range (2≲pT≲72\lesssim p_{T}\lesssim7 GeV/cc) in pppp collisions at s=7\sqrt{s}=7 TeV can be well understood by the equal-velocity combination of perturbatively-created charm quarks and those light-flavor constituent quarks and antiquarks. This suggests a possible new scenario of low pTp_{T} charm quark hadronization, in contrast to the traditional fragmentation mechanism, in pppp collisions at LHC energies. This is also another support for the exhibition of the effective constituent quark degrees of freedom for the small parton system created in pppp collisions at LHC energies.Comment: 7 pages, 5 figure

    Enforcement and equilibrium in the permit markets when firms are risk averse

    Get PDF
    This paper explores the role of uncertainty, in the form of measurement error, in pollution regulation under a tradable permit system. In particular, we showed the neutrality between the penalty and the audit frequency does not hold when agents (firms) are risk averse. Firms respond to the weight change between penalty and monitoring effort by adjusting their demand for pollution permits, as well as their production/pollution decisions. We studied two forms of the measurement error when observing the emissions: additive and multiplicative. While there are some analytical results for a model with additive error, the same cannot be said when the error is multiplicative to the real emission. We then used numerical methods to simulate firms behavior and the industry equilibrium with multiplicative error, and to identify the best policy for the government

    Simplicial Message Passing for Chemical Property Prediction

    Full text link
    Recently, message-passing Neural networks (MPNN) provide a promising tool for dealing with molecular graphs and have achieved remarkable success in facilitating the discovery and materials design with desired properties. However, the classical MPNN methods also suffer from a limitation in capturing the strong topological information hidden in molecular structures, such as nonisomorphic graphs. To address this problem, this work proposes a Simplicial Message Passing (SMP) framework to better capture the topological information from molecules, which can break through the limitation within the vanilla message-passing paradigm. In SMP, a generalized message-passing framework is established for aggregating the information from arbitrary-order simplicial complex, and a hierarchical structure is elaborated to allow information exchange between different order simplices. We apply the SMP framework within deep learning architectures for quantum-chemical properties prediction and achieve state-of-the-art results. The results show that compared to traditional MPNN, involving higher-order simplex can better capture the complex structure of molecules and substantially enhance the performance of tasks. The SMP-based model can provide a generalized framework for GNNs and aid in the discovery and design of materials with tailored properties for various applications

    Production of single-charm hadrons by quark combination mechanism in pp-Pb collisions at sNN=5.02\sqrt{s_{NN}}=5.02 TeV

    Full text link
    If QGP-like medium is created in pp-Pb collisions at extremely high collision energies, charm quarks that move in the medium can hadronize by capturing the co-moving light quark(s) or anti-quark(s) to form the charm hadrons. Using light quark pTp_{T} spectra extracted from the experimental data of light hadrons and a charm quark pTp_{T} spectrum that is consistent with perturbative QCD calculations, the central-rapidity data of pTp_{T} spectra and the spectrum ratios for DD mesons in the low pTp_{T} range (pT≲7p_{T}\lesssim7 GeV) in minimum-bias pp-Pb collisions at sNN=5.02\sqrt{s_{NN}}=5.02 TeV are well described by quark combination mechanism in equal-velocity combination approximation. The Λc+/D0\Lambda_{c}^{+}/D^{0} ratio in quark combination mechanism exhibits the typical increase-peak-decrease behavior as the function of pTp_{T}, and the shape of the ratio for pT≳3p_{T}\gtrsim3 GeV is in agreement with the preliminary data of ALICE collaboration in central rapidity region −0.96<y<0.04-0.96<y<0.04 and those of LHCb collaboration in forward rapidity region 1.5<y<4.01.5<y<4.0. The global production of single-charm baryons is quantified using the preliminary data and the possible enhancement (relative to light flavor baryons) is discussed. The pTp_{T} spectra of Ξc0\Xi_{c}^{0}, Ωc0\Omega_{c}^{0} in minimum-bias events and those of single-charm hadrons in high-multiplicity event classes are predicted, which serves as the further test of the possible change of the hadronization characteristic for low pTp_{T} charm quarks in the small system created in pp-Pb collisions at LHC energies.Comment: 13 pages, 8 figure

    Plasma Modeling for Ultrashort Laser Ablation of Dielectrics

    Get PDF
    In ultrashort pulse (\u3c10 ps) laser ablation of dielectrics, affected materials are first transformed into absorbing plasma with metallic properties and, then, the subsequent laser-plasma interaction causes material removals. For ultrashort-pulse laser ablation of dielectrics, this study proposes a model using the Fokker-Planck equation for electron density distribution, a plasma model for the optical properties of ionized dielectrics, and quantum treatments for electron heating and relaxation time. The free electron density distribution of the plasma within the pulse duration is then used to determine the ablation crater shape. The predicted threshold fluences and ablation depths for barium aluminum borosilicate and fused silica are in agreement with published experimental data. It is found that the significantly varying optical properties in time and space are the key factors determining the ablation crater shape. The effects of fluence and pulse duration are also studied

    A Plasma Model Combined with an Improved Two-Temperature Equation for Ultrafast Laser Ablation of Dielectrics

    Get PDF
    It remains a big challenge to theoretically predict the material removal mechanism in femtosecond laser ablation. To bypass this unresolved problem, many calculations of femtosecond laser ablation of nonmetals have been based on the free electron density distribution without the actual consideration of the phase change mechanism. However, this widely used key assumption needs further theoretical and experimental confirmation. by combining the plasma model and improved two-temperature model developed by the authors, this study focuses on investigating ablation threshold fluence, depth, and shape during femtosecond laser ablation of dielectrics through nonthermal processes (the Coulomb explosion and electrostatic ablation). The predicted ablation depths and shapes in fused silica, by using (1) the plasma model only and (2) the plasma model plus the two-temperature equation, are both in agreement with published experimental data. The widely used assumptions for threshold fluence, ablation depth, and shape in the plasma model based on free electron density are validated by the comparison study and experimental data

    Repeatable Nanostructures in Dielectrics by Femtosecond Laser Pulse Trains

    Get PDF
    Using the plasma model recent developed by the authors, this study predicts the existence of a constant ablation-depth zone with respect to fluence in femtosecond laser ablation of dielectrics, which has also been observed experimentally. It is found that the value of the constant ablation depth is significantly decreased by the pulse train technology. Repeatable nanostructures can be achieved with the parameters in the constant ablation-depth zone of a femtosecond pulse train, even when the laser system is subject to fluctuations in fluences
    • …
    corecore